[image: image1.jpg]NORTH SHORE TECHNOLOGIES

Testing Guidelines

Version History:
	Ver. No.
	Date
	Comments
	Prepared By
	Reviewed By
	Approved By

	Ver. 1.0
	18th May, 2010
	Initial Draft
	Jyotsna Bareja
	Abhishek Rautela
	Mr. Sudhir Saxena

	Ver. 1.1
	5th Jan, 2011
	Reviewed
	Abhishek Rautela
	Rohitash
	Mr. Sudhir Saxena

	Ver. 2.0
	27th June, 2012
	Update section Security testing
	Rahul raj
	Dhananjay Kumar
	GM Dua

	
	
	
	
	
	

Table of Contents

1.0 Introduction
4
1.1 Overview
4

1.2 Scope
4

2.0 Functional Vs Non Functional Testing
5

3.0 Defects & Failures
5

4.0 Finding Faults early
5
5.0 Testing Methods
6

5.1 White Box Testing
6

5.2 Black Box Testing
6

5.3 Grey Box Testing
6

6.0 Testing Levels
6

6.1 Unit Testing
6

6.2 Integration Testing
6

6.3 System Testing
6

6.4 System Integration Testing
6

6.5 Functional Testing
6

6.6 Regression Testing
6

6.7 GUI Testing
7

6.8 Acceptance Testing
7

6.8.1 Alpha Testing
7

6.8.2 Beta Testing
7

6.9 Smoke Testing
7

7.0 Non Functional Testing
7
7.1 Performance Testing
7

7.1.1 Load Testing
7

7.1.2 Stress Testing
7

7.1.3 Volume Testing
8

7.2 Usability Testing
8

7.3 Security Testing
9

7.4 Compatibility Testing
12

8.0 Testing Life Cycle
13

9.0 Testing Artifacts
13
9.1 Test Plan
13

9.2 Test Strategy
14

9.3 Test Suite
14

9.4 Test Data
14

1.0 Introduction

Software testing is an investigation conducted to provide stakeholders with information about the quality of the product or service under test. Test techniques include, but are not limited to, the process of executing a program or application with the intent of finding software bugs (errors or other defects).

Software testing can be stated as the process of validating and verifying that a software program/application/product:

1. Meets the requirements that guided its design and development;

2. Works as expected; and

3. Can be implemented with the same characteristics.

Software testing, depending on the testing method employed, can be implemented at any time in the development process. However, most of the test effort occurs after the requirements have been defined and the coding process has been completed. As such, the methodology of the test is governed by the software development methodology adopted.

**Different software development models will focus the test effort at different points in the development process.

1.1 Overview
Testing can never completely identify all the defects within software. Instead, it furnishes a criticism or comparison that compares the state and behavior of the product against oracles—principles or mechanisms by which someone might recognize a problem.

Every software product has a target audience. For example, the audience for video game software is completely different from banking software. Therefore, when an organization develops or otherwise invests in a software product, it can assess whether the software product will be acceptable to its end users, its target audience, its purchasers, and other stakeholders. Software testing is the process of attempting to make this assessment.

1.2 Scope

A primary purpose of testing is to detect software failures so that defects may be discovered and corrected. Testing cannot establish that a product functions properly under all conditions but can only establish that it does not function properly under specific conditions. The scope of software testing often includes examination of code as well as execution of that code in various environments and conditions as well as examining the aspects of code: does it do what it is supposed to do and do what it needs to do.
2.0 Functional vs. Non-Functional Testing

Functional testing refers to activities that verify a specific action or function of the code. These are usually found in the code requirements documentation, although some development methodologies work from use cases or user stories. Functional tests tend to answer the question of "can the user do this" or "does this particular feature work."

Non-functional testing refers to aspects of the software that may not be related to a specific function or user action, such as Compatibility or other performance, behavior under certain Usability, or security. Non-functional requirements tend to be those that reflect the quality of the product, particularly in the context of the suitability perspective of its users.

3.0 Defects & Failures

Not all software defects are caused by coding errors. One common source of expensive defects is caused by requirement gaps, e.g., unrecognized requirements, which result in errors of omission by the program designer.

A common source of requirements gaps is non-functional requirements such as usability, performance, and security.

Software faults occur through the following processes. A programmer makes an error (mistake), which results in a defect (fault, bug) in the software source code. If this defect is executed, in certain situations the system will produce wrong results, causing a failure. Not all defects will necessarily result in failures.
4.0 Finding faults early
It is commonly believed that the earlier a defect is found the cheaper it is to fix it. The following table shows the cost of fixing the defect depending on the stage it was found.
[image: image2.png]Software testing - Wikipedia, the free encyclopedia - Mozilla Firefox

Ho G Yen Hgoy Gomals Lo teb

- popttaiong) (@) - @ ¥ -] -
@ Dssie- 3, ook ' 55 = Forms- (5 nages- @) Informatin- [Miscelbnecus- 4 Outine- 1, Resiz 3 Tocks [vew surce- [5] Optos- P
search - 4 3 - @ b+ 1M - @ shore- 17 Bookmarisw & Trndte + o arorl -+ S projeet 5 tlorng L sen -

4| 23 softwere. £ Types of. A Types of . Offerent... | | [T Dferent. A gestig 7. | W spatem e W Softwa... 3 | || Process B
the envronment is changed. Examples of these changes in envronment nclude the software being fUA 0N new fardhare platiorm, a
alterations in source data or interacting with different software. ™) A single defect may result in a wide range of failure symptoms. 1

W http:/jen.wikipedia.orgjwikjSoftware_testing B -] C

Google | profect taloring v

Finding faults early edit]
It is commonly believed that the earlier a defect is found the cheaper it is to fix it. 7] The following table shows the cost of fixing the defect
depending on the stage it was found.["®] For example, if a problem in the requirements is found only post-release, then it would cost 10-100
times more to fix than f it had already been found by the requirements review.

Time detected
Costto fix a defect

Requirements| Architecture | Construction System test Post.release
Requirements| 1x 3 510 0% 10-100x
ime introduced Architecture - 1x 0% 15% 25-100x
Construction - - 1x 0% 10-25¢

Compatibility edit]

A cormmon cause of software faiure (real or perceived) is a lack of compatibility with other application software, operating systerns (or
operating system versions, old or new), or target environments that difer greatly from the original (such as a terminal or GUI application
intended to be run on the deskiop now being required to become a web application, which must render in a web browser). For example, in the
case of a lack of backward compatibilty, this can accur because the programrmers develop and test software only on the latest version of the
target environment, which not all users may be running. This results in the unintended consequence that the latest work may not function on
earler versions of the target emironment, o on older hardware that earler versions of the target emvironment was capable of using.
Sormetimes such issues can be fixed by proactively abstracting operating system functionaliy into a separate program module of library.

Input combinations and preconditions [edit]

A very fundamental problerm with software testing is that testing under ail combinations of inputs and precanditions (iniial state) s not
feasible, even with a simple product."'%] This means that the number of defects in a software product can be very large and defects that

LE IR EREIINE

i oone

	
	

5.0 Testing Methods

Software testing methods are traditionally divided into white- and black-box testing. These two approaches are used to describe the point of view that a test engineer takes when designing test cases.

5.1 White box testing: WB Testing is when the tester has access to the internal data structures and algorithms including the code that implement these.

5.2 Black box testing: BB Testing treats the software as a "black box"—without any knowledge of internal implementation.

5.3 Grey Box Testing: GB Testing is combination of black box and white box testing
6.0 Testing levels

6.1 Unit Testing

Unit testing, also known as component testing refers to tests that verify the functionality of a specific section of code, usually at the function level.
6.2 Integration Testing

Integration testing is any type of software testing that seeks to verify the interfaces between components against a software design.
6.3 System Testing

System testing tests a completely integrated system to verify that it meets its requirements.

6.4 System Integration Testing

System integration testing verifies that a system is integrated to any external or third-party systems defined in the system requirements.

6.5 Functional Testing

All the functions in the applications should be tested against the requirements document to ensure that the product conforms to what was specified. (They meet functional requirements)Verifies the crucial business functions are working in the application. Business functions are generally defined in the requirements Document.
6.6 Regression Testing

Similar in scope to a functional test, a regression test allows a consistent, repeatable validation of each new release of a product or Web site. Such testing ensures reported product defects have been corrected for each new release and that no new quality problems were introduced in the maintenance process. Though regression testing can be performed manually an automated test suite is often used to reduce the time and resources needed to perform the required testing.

6.7 GUI Testing

Graphical user interface testing is the process of testing a product's graphical user interface to ensure it meets its written specifications. This is normally done through the use of a variety of test cases.

6.8 Acceptance Testing

Testing to verify a product meets customer specified requirements. A customer usually does this type of testing on a product that is developed externally

6.8.1 Alpha Testing: In house virtual user environment can be created for this type of testing. Testing is done at the end of development. Still minor design changes may be made as a result of such testing.
6.8.2 Beta Testing: Testing typically done by end-users or others. Final testing before releasing application for commercial purpose.
6.9 Smoke Testing

A quick-and-dirty test that the major functions of a piece of software work without bothering with finer details. Originated in the hardware testing practice of turning on a new piece of hardware for the first time and considering it a success if it does not catch on fire.
7.0 Non Functional Testing

7.1 Performance Testing:

Performance Testing is testing that is performed to determine how fast some aspect of a system performs under a particular workload. This is specifically related to response times. With reference to this, following are the main points of considerations:

7.1.1 Load Testing: The web application needs to be load tested to check the scalability of the website. To cater for this aspect of performance testing, refer to Load Testing. Load testing refers to testing the system behavior and performance under stressful conditions.

7.1.2 Stress Testing: System is stressed beyond its specifications to check how and when it fails. Performed under heavy load like putting large number beyond storage capacity, complex database queries, continuous input to system or database load.
7.1.3 Volume Testing: Testing the applications with voluminous amount of data and see whether the application produces the anticipated results (Boundary value analysis)
7.2 Usability Testing

Usability Testing refers to evaluating the ease with which users can learn and use a product (such as a website) for its intended purpose.

The aim is to observe people using the product to discover errors and areas of improvement. Usability testing generally involves measuring how well test subjects respond in four areas: Efficiency, Accuracy, Recall, And Emotional Response.

· Efficiency -- How much time, and how many steps, are required for people to complete basic tasks? (For example, find something to buy, create a new account, and order the item.)

· Accuracy -- How many mistakes did people make? (And were they fatal or recoverable with the right information?)

· Recall -- How much does the person remember afterwards or after periods of non-use?

· Emotional response -- How does the person feel about the tasks completed? Is the person confident, stressed? Would the user recommend this system to a friend?
Following points may help in performing formal testing:

· While testing for usability issues, the first and the foremost thing to note is check whether the company’s home page is displaying information regarding what the company does and its purpose.

· It is a good practice to have the name and logo placed on every page and the logo can be a link to the home page (except on the home page itself, where the logo should not be a link: never have a link that points right back to the current page).

· Each page should be structured so as to break long text into smaller units. e.g. grouping or subheadings can be used to help ignore large chunks of the page in a single glance.

· Another important usability issue is to check for link titles, which provide users with a preview of where each link will take them, before they have clicked on it.

· Test for broken links.

· The behavior of websites with respect to supported resolution(s) can be tested to ensure that changing resolution does not distort the layout of web pages.

· The layout of all the pages should be in accordance with the design specified. All pages need to be consistent with respect to the following:
Layout of controls

· Color scheme of pages

· Font style, size, case of forms, reports and case of column headings incase of tables throughout the website

· The navigation links in all the subsequent pages need to depict the entire path followed to reach a specific page.

· Clicking any of the links should lead to the corresponding page. Remember, if you are testing with the intent to improve the usability of the website, you should not have the feeling "Ok, where to go now?" or "Where did I start from?".

· On all ‘Submit’ buttons, there should be a proper indication to the user corresponding to the action performed (success/failure).

· Test for semantic and syntactic errors incase of text displayed on all the pages.

· On long forms (e.g. while adding users, providing company information etc), a ‘Clear’ button has to be provided to reset all the fields.

· It would be a good idea to provide a proper welcome message along with username when the user logs in.

· If multiple records are to be displayed per page, there should be a limit on the maximum number of records displayed per page (e.g. 10 or 20).

· An alternative could be to ask the user to specify his/her own limit. Moreover, distribution of records in terms of page numbers may be provided to increase readability. (e.g. Page: 1 2 3 4).

· Test for navigation within a form i.e. all the fields within a form should have proper tab-order.

· Different colors may be used to distinguish visited and un-visited links.

7.3 Security Testing

Security Testing refers to testing of software in order to keep company data and resources secure from mistaken/accidental users, hackers, and other malevolent attackers. In this context, following are the major areas to focus on:

Database-driven websites are very common, and the parameters of a database query can often be seen in the URL of web pages. Here comes the time to test for Data Leakage. This refers to the fact that when information is passed in the query string i.e. in URL (e.g. using the "Get" method), an attacker may be able to access the database by iterating through the sequence of parameters passed in query string that forms part of the URL. For instance, a customer may somehow manage to alter the price of an order, or mark an unpaid order as paid. Special consideration needs to be given to this aspect while testing security related scenarios of websites.

While testing a website from a security perspective, make sure to test for SQL Injection Attacks. This is the name given to a vulnerability caused by poor input validation in an application, resulting in running unintended SQL scripts.

Weakness in Control Panel of a shopping cart is another domain to focus on. In the Control Panel, roles and rights need to be clearly defined. Restricted access needs to be given to users e.g. in case of an admin control panel for a shopping cart, the right to view and alter the transactions needs to be restricted to a particular role and should not be given to multiple users. Only the super user should have access to alter the transaction details. Moreover, thorough testing is required to test the access rights definition feature. This is important because it may happen that a user with limited access may somehow manage to elevate his/her rights and gain the rights of any other user (say super user).

Incase of credit card transactions, if credit card numbers are to be stored in the database, a tester needs to ensure that a proper encryption algorithm is in place to encrypt those numbers and later on decrypt them.
Some key terms used in security testing
Before we go further, it will be useful to be aware of a few terms that are frequently used in web application security testing:

What is “Vulnerability”?
This is a weakness in the web application. The cause of such a “weakness” can be bugs in the application, an injection (SQL/ script code) or the presence of viruses.

What is “URL manipulation”?
Some web applications communicate additional information between the client (browser) and the server in the URL. Changing some information in the URL may sometimes lead to unintended behavior by the server.

What is “SQL injection”?
This is the process of inserting SQL statements through the web application user interface into some query that is then executed by the server.

What is “XSS (Cross Site Scripting)”?
When a user inserts HTML/ client-side script in the user interface of a web application and this insertion is visible to other users, it is called XSS.

What is “Spoofing”?
The creation of hoax look-alike websites or emails is called spoofing.
Security testing approach:

In order to perform a useful security test of a web application, the security tester should have good knowledge of the HTTP protocol. It is important to have an understanding of how the client (browser) and the server communicate using HTTP. Additionally, the tester should at least know the basics of SQL injection and XSS. Hopefully, the number of security defects present in the web application will not be high. However, being able to accurately describe the security defects with all the required details to all concerned will definitely help.

1. Password cracking:
The security testing on a web application can be kicked off by “password cracking”. In order to log in to the private areas of the application, one can either guess a username/ password or use some password cracker tool for the same. Lists of common usernames and passwords are available along with open source password crackers. If the web application does not enforce a complex password (e.g. with alphabets, number and special characters, with at least a required number of characters), it may not take very long to crack the username and password.

If username or password is stored in cookies without encrypting, attacker can use different methods to steal the cookies and then information stored in the cookies like username and password.

For more details see article on “Website cookie testing”.

2. URL manipulation through HTTP GET methods:
The tester should check if the application passes important information in the query string. This happens when the application uses the HTTP GET method to pass information between the client and the server. The information is passed in parameters in the query string. The tester can modify a parameter value in the query string to check if the server accepts it.

Via HTTP GET request user information is passed to server for authentication or fetching data. Attacker can manipulate every input variable passed from this GET request to server in order to get the required information or to corrupt the data. In such conditions any unusual behavior by application or web server is the doorway for the attacker to get into the application.

3. SQL Injection:
The next thing that should be checked is SQL injection. Entering a single quote (‘) in any textbox should be rejected by the application. Instead, if the tester encounters a database error, it means that the user input is inserted in some query which is then executed by the application. In such a case, the application is vulnerable to SQL injection.

SQL injection attacks are very critical as attacker can get vital information from server database. To check SQL injection entry points into your web application, find out code from your code base where direct MySQL queries are executed on database by accepting some user inputs.

If user input data is crafted in SQL queries to query the database, attacker can inject SQL statements or part of SQL statements as user inputs to extract vital information from database. Even if attacker is successful to crash the application, from the SQL query error shown on browser, attacker can get the information they are looking for. Special characters from user inputs should be handled/escaped properly in such cases.

4. Cross Site Scripting (XSS):
The tester should additionally check the web application for XSS (Cross site scripting). Any HTML e.g. <HTML> or any script e.g. <SCRIPT> should not be accepted by the application. If it is, the application can be prone to an attack by Cross Site Scripting.

Attacker can use this method to execute malicious script or URL on victim’s browser. Using cross-site scripting, attacker can use scripts like JavaScript to steal user cookies and information stored in the cookies.

Many web applications get some user information and pass this information in some variables from different pages.

E.g.: http://www.examplesite.com/index.php?userid=123&query=xyz

Attacker can easily pass some malicious input or <script> as a ‘&query’ parameter which can explore important user/server data on browser.

Important: During security testing, the tester should be very careful not to modify any of the following:

· Configuration of the application or the server

· Services running on the server

· Existing user or customer data hosted by the application

Additionally, a security test should be avoided on a production system.

The purpose of the security test is to discover the vulnerabilities of the web application so that the developers can then remove these vulnerabilities from the application and make the web application and data safe from unauthorized actions.

7.4 Compatibility Testing
Compatibility testing, part of software non-functional tests, is testing conducted on the application to evaluate the application's compatibility with the computing environment. Computing environment may contain some or all of the below mentioned elements:

· Computing capacity of Hardware Platform (IBM 360, HP 9000, etc.)..

· Bandwidth handling capacity of networking hardware

· Compatibility of peripherals (Printer, DVD drive, etc.)

· Operating systems (MVS, UNIX, Windows, etc.)

· Database (Oracle, Sybase, DB2, etc.)

· Other System Software (Web server, networking/ messaging tool, etc.)

· Browser compatibility (Firefox, Netscape, Internet Explorer, Safari, etc.)
8.0 Testing Life Cycle

NST Testing Life Cycle is as follow. The sample below is for Waterfall development model. NST can customize it according to SDLC model

[image: image3.jpg]

· Requirements analysis: Testing should begin in the requirements phase of the software development life cycle. During the design phase, testers work with developers in determining what aspects of a design are testable and with what parameters those tests work.
Activities

· Identify types of tests to be performed.

· Gather details about testing priorities and focus.

· Prepare Requirement Traceability Matrix (RTM).

· Identify test environment details where testing is supposed to be carried out.

· Automation feasibility analysis (if required).

Deliverables

· RTM

· Automation feasibility report. (if applicable)

· Test planning: Test strategy, test plan, test bed creation. Since many activities will be carried out during testing, a plan is needed.
Activities

· Preparation of test plan/strategy document for various types of testing

· Test tool selection

· Test effort estimation

· Resource planning and determining roles and responsibilities.

· Training requirement

Deliverables

· Test plan /strategy document.

· Effort estimation document.

· Test Case development: Test procedures, test scenarios, test cases, test datasets, test scripts to use in testing software.
Activities

· Create test cases, automation scripts (if applicable)

· Review and baseline test cases and scripts

· Create test data (If Test Environment is available)

Deliverables

· Test cases/scripts

· Test data

· Environment Setup: Test environment decides the software and hardware conditions under which a work product is tested. Test environment set-up is one of the critical aspects of testing process and can be done in parallel with Test Case Development Stage. Test team may not be involved in this activity if the customer/development team provides the test environment in which case the test team is required to do a readiness check (smoke testing) of the given environment.
Activities
· Understand the required architecture, environment set-up and prepare hardware and software requirement list for the Test Environment.

· Setup test Environment and test data

· Perform smoke test on the build

Deliverables

· Environment ready with test data set up

· Smoke Test Results.

· Test execution: Testers execute the software based on the plans and test documents then report any errors found to the development team.
Activities

· Execute tests as per plan

· Document test results, and log defects for failed cases

· Map defects to test cases in RTM

· Retest the defect fixes

· Track the defects to closure

Deliverables

· Completed RTM with execution status

· Test cases updated with results

· Defect reports

· Test reporting: Once testing is completed, testers generate metrics and make final reports on their test effort and whether or not the software tested is ready for release.
· Test result analysis: Or Defect Analysis, is done by the development team usually along with the client, in order to decide what defects should be assigned, fixed, rejected (i.e. found software working properly) or deferred to be dealt with later.
· Defect Retesting: Once a defect has been dealt with by the development team, it is retested by the testing team.
· Regression testing: It is common to have a small test program built of a subset of tests, for each integration of new, modified, or fixed software, in order to ensure that the latest delivery has not ruined anything, and that the software product as a whole is still working correctly.
· Test Closure: Once the test meets the exit criteria, the activities such as capturing the key outputs, lessons learned, results, logs, documents related to the project are archived and used as a reference for future projects.
Activities

· Evaluate cycle completion criteria based on Time, Test coverage, Cost, Software, Critical Business Objectives, Quality

· Prepare test metrics based on the above parameters.

· Document the learning out of the project

· Prepare Test closure report

· Qualitative and quantitative reporting of quality of the work product to the customer.

· Test result analysis to find out the defect distribution by type and severity.

Deliverables

· Test Closure report / Release Note/System Signoff Records
· Test metrics

9.0 Testing Artifacts

9.1 Test Plan

A test specification is called a test plan. The developers are well aware what test plans will be executed and this information is made available to management and the developers

9.2 Test Strategy

A test strategy is an outline that describes the testing portion of the software development cycle. It is created to inform project managers, testers, and developers about some key issues of the testing process. This includes the testing objective, methods of testing new functions, total time and resources required for the project, and the testing environment.

9.3 Test Suite

The most common term for a collection of test cases is a test suite. The test suite often also contains more detailed instructions or goals for each collection of test cases. It definitely contains a section where the tester identifies the system configuration used during testing.

9.4 Test Data

In most cases, multiple sets of values or data are used to test the same functionality of a particular feature.
Testing Guidelines~NST

Page 16\16

